Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion

نویسندگان

  • Dongming Gan
  • Jian S. Dai
  • Jorge Dias
  • Lakmal Seneviratne
چکیده

This paper introduces a new metamorphic parallel mechanism consisting of four reconfigurable rTPS limbs. Based on the reconfigurability of the reconfigurable Hooke (rT) joint, the rTPS limb has two phases while in one phase the limb has no constraint to the platform, in the other it constrains the spherical joint center to lie on a plane. This results in the mechanism to have ability of reconfiguration between different topologies with variable mobility. Geometric constraint equations of the platform rotation matrix and translation vector are set up based on the point-plane constraint, which reveals the bifurcated motion property in the topology with mobility 2 and the geometric condition with mobility change in altering to other mechanism topologies. Following this, a unified kinematics limb modeling is proposed considering the difference between the two phases of the reconfigurable rTPS limb. This is further applied for the mechanism modeling and both the inverse and forward kinematics is analytically solved by combining phases of the four limbs covering all the mechanism topologies. Based on these, a unified singularity modeling is proposed by defining the geometric constraint forces and actuation forces in the Jacobian matrix with their change in the variable topologies in terms of constraint screws. Analysis of workspace with singularity distribution is carried out using this model and corresponding singularity loci are obtained with special singular configurations illustrated. [DOI: 10.1115/1.4024292]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator

This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

Singularity Analysis of Three-legged Parallel Robots Based on Passive-joint Velocities

The closed-loop structure of a parallel robot results in complex kinematic singularities in the workspace of the mobile platform. Singularity analysis become important in design, motion planning, and control of parallel robots. Focusing on the instantaneous velocities of passive joints, a new formulation approach is proposed for the instantaneous kinematics and singularity analysis of a class o...

متن کامل

New Parallel Mechanism Enabling Continuous 360-degree Spinning Plus Three-axis Translational M[otions

This paper presents the Eclipse-11, a new six degree-offreedom parallel mechanism, which can be used as a basis for general motion simulators. The Eclipse-I1 is capable of x, y and z-axis translations and a, b and c-axis rotations. In particular, it has the advantage of enabling continuous 360-degree spinning of the platform. The computational procedures for forward and inverse kinematics of th...

متن کامل

Kinematics Analysis and Motion Simulation of a Quadruped Walking Robot with Parallel Leg Mechanism

Compared with the serial mechanism, the parallel mechanism has many advantages. Using the parallel mechanism as the basic leg mechanism of a walking robot, not only the payload-weight ratio can be improved, but also the robot walking stability and security performance can be enhanced. By combining the kinematics features of 3-UPU parallel mechanism with the structural features of the quadruped ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013